Find x and y, if 2\(\begin{bmatrix}1&3\\0&x\end{bmatrix}\)+\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
2\(\begin{bmatrix}1&3\\0&x\end{bmatrix}\)+\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}2&6\\0&2x\end{bmatrix}\) +\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2+y&6\\1&2x+2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
Comparing the corresponding elements of these two matrices, we have:
2+y=5
\(\Rightarrow\) y=3.
2x+2=8
\(\Rightarrow\) x=3
∴x = 3 and y = 3
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?