Find x and y, if 2\(\begin{bmatrix}1&3\\0&x\end{bmatrix}\)+\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
2\(\begin{bmatrix}1&3\\0&x\end{bmatrix}\)+\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}2&6\\0&2x\end{bmatrix}\) +\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2+y&6\\1&2x+2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
Comparing the corresponding elements of these two matrices, we have:
2+y=5
\(\Rightarrow\) y=3.
2x+2=8
\(\Rightarrow\) x=3
∴x = 3 and y = 3
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?