Find x and y, if 2\(\begin{bmatrix}1&3\\0&x\end{bmatrix}\)+\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
2\(\begin{bmatrix}1&3\\0&x\end{bmatrix}\)+\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}2&6\\0&2x\end{bmatrix}\) +\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2+y&6\\1&2x+2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
Comparing the corresponding elements of these two matrices, we have:
2+y=5
\(\Rightarrow\) y=3.
2x+2=8
\(\Rightarrow\) x=3
∴x = 3 and y = 3
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)