Find x and y, if 2\(\begin{bmatrix}1&3\\0&x\end{bmatrix}\)+\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
2\(\begin{bmatrix}1&3\\0&x\end{bmatrix}\)+\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}2&6\\0&2x\end{bmatrix}\) +\(\begin{bmatrix}y&0\\1&2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2+y&6\\1&2x+2\end{bmatrix}\)=\(\begin{bmatrix}5&6\\1&8\end{bmatrix}\)
Comparing the corresponding elements of these two matrices, we have:
2+y=5
\(\Rightarrow\) y=3.
2x+2=8
\(\Rightarrow\) x=3
∴x = 3 and y = 3
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: