Step 1: Recall formula. The equation of a plane passing through point $\vec{r}_0$ with normal vector $\vec{n}$ is: \[ \vec{n} \cdot (\vec{r} - \vec{r}_0) = 0 \]
Step 2: Write given data. Normal vector: $\vec{n} = \hat{i} + \hat{j} - \hat{k} = (1,1,-1)$ Point: $(1,0,-2)$
Step 3: Vector equation of plane. \[ (1,1,-1) \cdot \big( (x,y,z) - (1,0,-2) \big) = 0 \] \[ (x-1) + (y-0) - (z+2) = 0 \] \[ x + y - z - 3 = 0 \]
Step 4: Write both forms. - Vector form: \[ \vec{r} \cdot (1,1,-1) = (1,0,-2)\cdot(1,1,-1) \] \[ \vec{r} \cdot (1,1,-1) = 3 \] - Cartesian form: \[ x + y - z - 3 = 0 \]
Final Answer: Vector equation: $\;\boxed{\vec{r}\cdot(1,1,-1)=3}$ Cartesian equation: $\;\boxed{x+y-z-3=0}$
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $