\( x = \frac{\pi}{2} \)
\( x = \frac{\pi}{4} \)
Step 1: Recall the general solution for the sine function:
The sine function reaches its maximum value of 1 at specific angles. The general solution for \( \sin(\theta) = 1 \) is given by:
\[ \theta = \frac{\pi}{2} + 2n\pi \quad \text{where } n \in \mathbb{Z} \]
Step 2: Apply the solution to \( \sin(2x) = 1 \):
Here, we have \( \sin(2x) = 1 \). Using the general solution for \( \sin(\theta) = 1 \), we substitute \( \theta = 2x \) into the equation:
\[ 2x = \frac{\pi}{2} + 2n\pi \quad \text{where } n \in \mathbb{Z} \]
Step 3: Solve for \( x \):
Divide both sides of the equation by 2:
\[ x = \frac{\pi}{4} + n\pi \quad \text{where } n \in \mathbb{Z} \]
The value of \( x \) is given by:
\[ x = \frac{\pi}{4} + n\pi \quad \text{where } n \in \mathbb{Z} \]
This means that \( x \) takes values starting from \( \frac{\pi}{4} \), and every \( \pi \) radians thereafter.
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to: