Step 1: In \( \triangle ABC \), \( \angle ABC = 90^\circ \) and \( \angle C = \theta \). From the Pythagoras theorem:
\[
AB^2 + BC^2 = AC^2.
\]
Step 2: Dividing throughout by \( AC^2 \):
\[
\frac{AB^2}{AC^2} + \frac{BC^2}{AC^2} = \frac{AC^2}{AC^2}.
\]
Step 3: Simplifying, we get:
\[
\left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = 1.
\]
Step 4: Substituting trigonometric ratios:
\[
\sin \theta = \frac{BC}{AC}, \quad \cos \theta = \frac{AB}{AC}.
\]
Thus:
\[
\sin^2 \theta + \cos^2 \theta = 1.
\]