Find the value of a,b,c, and d from the equation: \(\begin{bmatrix}a-b&2a+c\\2a-b&3c+d\end{bmatrix}=\begin{bmatrix}-1&5\\0&13\end{bmatrix}\)
\(\begin{bmatrix}a-b&2a+c\\2a-b&3c+d\end{bmatrix}=\begin{bmatrix}-1&5\\0&13\end{bmatrix}\)As the two matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
a − b = −1 … (1)
2a − b = 0 … (2)
2a + c = 5 … (3)
3c + d = 13 … (4)
From (2), we have:
b = 2a
Then, from (1), we have:
a − 2a = −1
\(\Rightarrow\) a = 1
\(\Rightarrow\)b = 2
Now, from (3), we have:
2 ×1 + c = 5
\(\Rightarrow\) c = 3
From (4) we have:
3 ×3 + d = 13
\(\Rightarrow\) 9 + d = 13 ⇒ d = 4
∴a = 1, b = 2, c = 3, and d = 4
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.