The square of the vector \( \mathbf{A} = 4 \mathbf{i} + 3 \mathbf{j} \) is calculated as:
\[
|\mathbf{A}|^2 = (4\mathbf{i} + 3\mathbf{j}) \cdot (4\mathbf{i} + 3\mathbf{j}).
\]
Using the distributive property of the dot product:
\[
|\mathbf{A}|^2 = 4^2(\mathbf{i} \cdot \mathbf{i}) + 4 \times 3 (\mathbf{i} \cdot \mathbf{j}) + 3^2 (\mathbf{j} \cdot \mathbf{j}).
\]
Since \( \mathbf{i} \cdot \mathbf{i} = 1 \), \( \mathbf{j} \cdot \mathbf{j} = 1 \), and \( \mathbf{i} \cdot \mathbf{j} = 0 \) (since the vectors are orthogonal):
\[
|\mathbf{A}|^2 = 16 \times 1 + 0 + 9 \times 1 = 16 + 9 = 25.
\]
Thus, the correct answer is option (C) 25.