Step 1: Understanding the Concept:
The problem asks for the shortest distance between two lines in 3D space given in vector form. The lines are not parallel, so they are skew lines.
Step 2: Key Formula or Approach:
The shortest distance \(d\) between two skew lines \(\vec{r} = \vec{a_1} + \lambda \vec{b_1}\) and \(\vec{r} = \vec{a_2} + \mu \vec{b_2}\) is given by the formula:
\[ d = \left| \frac{(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})}{|\vec{b_1} \times \vec{b_2}|} \right| \]
Step 3: Detailed Explanation:
From the given equations, we identify the vectors:
For the first line:
\[ \vec{a_1} = \hat{i}+2\hat{j}+3\hat{k} \]
\[ \vec{b_1} = \hat{i}-3\hat{j}+2\hat{k} \]
For the second line:
\[ \vec{a_2} = 4\hat{i}+5\hat{j}+6\hat{k} \]
\[ \vec{b_2} = 2\hat{i}+3\hat{j}+\hat{k} \]
First, we find the vector \(\vec{a_2} - \vec{a_1}\):
\[ \vec{a_2} - \vec{a_1} = (4-1)\hat{i} + (5-2)\hat{j} + (6-3)\hat{k} = 3\hat{i}+3\hat{j}+3\hat{k} \]
Next, we calculate the cross product \(\vec{b_1} \times \vec{b_2}\):
\[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & -3 & 2
2 & 3 & 1 \end{vmatrix} \]
\[ = \hat{i}((-3)(1) - (2)(3)) - \hat{j}((1)(1) - (2)(2)) + \hat{k}((1)(3) - (-3)(2)) \]
\[ = \hat{i}(-3 - 6) - \hat{j}(1 - 4) + \hat{k}(3 + 6) \]
\[ = -9\hat{i} + 3\hat{j} + 9\hat{k} \]
Now, we find the magnitude of the cross product:
\[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(-9)^2 + 3^2 + 9^2} = \sqrt{81 + 9 + 81} = \sqrt{171} \]
\(\sqrt{171} = \sqrt{9 \times 19} = 3\sqrt{19}\).
Next, we calculate the dot product \((\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})\):
\[ (3\hat{i}+3\hat{j}+3\hat{k}) \cdot (-9\hat{i} + 3\hat{j} + 9\hat{k}) = (3)(-9) + (3)(3) + (3)(9) \]
\[ = -27 + 9 + 27 = 9 \]
Finally, we substitute these values into the shortest distance formula:
\[ d = \left| \frac{9}{3\sqrt{19}} \right| = \frac{3}{\sqrt{19}} \]
Step 4: Final Answer:
The shortest distance between the two lines is \(\frac{3}{\sqrt{19}}\) units.