Question:

Find the shortest distance between the lines \[ \vec{r} = (i + 2j + k) + \lambda(i - j + k) \] and \[ \vec{r} = (2i - j - k) + \mu(2i + j + 2k) \]

Show Hint

To find the shortest distance between two skew lines, use the formula involving the cross product of the direction vectors and the vector between points on the two lines.
Updated On: Oct 8, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The shortest distance between two skew lines is given by the formula: \[ d = \frac{|\vec{a} - \vec{b} . (\vec{v_1} \times \vec{v_2})|}{|\vec{v_1} \times \vec{v_2}|} \] Where: - \( \vec{a} \) and \( \vec{b} \) are position vectors of points on the first and second lines respectively. - \( \vec{v_1} \) and \( \vec{v_2} \) are the direction vectors of the two lines. From the parametric equations: 1. For the first line: \( \vec{a} = i + 2j + k \), and the direction vector is \( \vec{v_1} = i - j + k \). 2. For the second line: \( \vec{b} = 2i - j - k \), and the direction vector is \( \vec{v_2} = 2i + j + 2k \). Now, calculate \( \vec{v_1} \times \vec{v_2} \): \[ \vec{v_1} \times \vec{v_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & -1 & 1
2 & 1 & 2 \end{vmatrix} \] \[ = \hat{i} \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \] \[ = \hat{i}((-1)(2) - (1)(1)) - \hat{j}((1)(2) - (1)(2)) + \hat{k}((1)(1) - (-1)(2)) \] \[ = \hat{i}(-2 - 1) - \hat{j}(2 - 2) + \hat{k}(1 + 2) \] \[ = -3\hat{i} + 0\hat{j} + 3\hat{k} \] So, \( \vec{v_1} \times \vec{v_2} = -3\hat{i} + 3\hat{k} \). Next, calculate \( |\vec{v_1} \times \vec{v_2}| \): \[ |\vec{v_1} \times \vec{v_2}| = \sqrt{(-3)^2 + 0^2 + 3^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] Now, calculate \( \vec{a} - \vec{b} \): \[ \vec{a} - \vec{b} = (i + 2j + k) - (2i - j - k) \] \[ = i + 2j + k - 2i + j + k = -i + 3j + 2k \] Finally, calculate the dot product \( (\vec{a} - \vec{b}) . (\vec{v_1} \times \vec{v_2}) \): \[ (\vec{a} - \vec{b}) . (\vec{v_1} \times \vec{v_2}) = (-i + 3j + 2k) . (-3\hat{i} + 3\hat{k}) \] \[ = (-1)(-3) + (3)(0) + (2)(3) = 3 + 0 + 6 = 9 \] Now, substitute into the formula for distance: \[ d = \frac{|9|}{3\sqrt{2}} = \frac{9}{3\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} \]
Final Answer:
The shortest distance between the lines is \( \boxed{\frac{3\sqrt{2}}{2}} \).
Was this answer helpful?
0
0

Top Questions on 3D Geometry

View More Questions