Question:

Find the shortest distance between the lines \[ \vec{r_1} = (1 - t) \hat{i} + (t - 2) \hat{j} + (3 - 2t) \hat{k} \] \text{and} \[ \vec{r_2} = (s + 1) \hat{i} + (2s - 1) \hat{j} - (2s + 1) \hat{k}. \]

Show Hint

For finding the shortest distance between two skew lines, use the formula involving the cross product of the direction vectors and the vector joining points on the lines.
Updated On: Oct 4, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The shortest distance between two skew lines is given by the formula: \[ d = \frac{|(\vec{r_2_0} - \vec{r_1_0}) \cdot (\vec{a_1} \times \vec{a_2})|}{|\vec{a_1} \times \vec{a_2}|} \] where \( \vec{r_1_0} \) and \( \vec{r_2_0} \) are position vectors of points on the lines, and \( \vec{a_1} \) and \( \vec{a_2} \) are direction vectors of the lines. From the given vectors, \( \vec{r_1} = (1 - t) \hat{i} + (t - 2) \hat{j} + (3 - 2t) \hat{k} \), \( \vec{r_2} = (s + 1) \hat{i} + (2s - 1) \hat{j} - (2s + 1) \hat{k} \). So, the direction vectors are: \[ \vec{a_1} = -\hat{i} + \hat{j} - 2\hat{k}, \vec{a_2} = \hat{i} + 2\hat{j} - 2\hat{k}. \] The point on line 1 can be taken as \( \vec{r_1_0} = \hat{i} - 2\hat{j} + 3\hat{k} \), and the point on line 2 can be taken as \( \vec{r_2_0} = \hat{i} - \hat{j} - \hat{k} \). Now, calculate the cross product \( \vec{a_1} \times \vec{a_2} \): \[ \vec{a_1} \times \vec{a_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} \] \[ = \hat{i}(1 \times -2 - 2 \times -2) - \hat{j}(-1 \times -2 - 1 \times -2) + \hat{k}(-1 \times 2 - 1 \times 1). \] \[ = \hat{i}(-2 + 4) - \hat{j}(2 + 2) + \hat{k}(-2 - 1) \] \[ = 2\hat{i} - 4\hat{j} - 3\hat{k}. \] Now calculate the numerator: \[ \vec{r_2_0} - \vec{r_1_0} = (\hat{i} - \hat{j} - \hat{k}) - (\hat{i} - 2\hat{j} + 3\hat{k}) = \hat{j} - 4\hat{k}. \] Now, calculate the dot product: \[ (\vec{r_2_0} - \vec{r_1_0}) \cdot (\vec{a_1} \times \vec{a_2}) = ( \hat{j} - 4 \hat{k}) \cdot (2 \hat{i} - 4 \hat{j} - 3 \hat{k}) \] \[ = (0) + (-4 \times -4) + (-4 \times -3) = 16 + 12 = 28. \] Now, calculate the magnitude of \( \vec{a_1} \times \vec{a_2} \): \[ |\vec{a_1} \times \vec{a_2}| = \sqrt{2^2 + (-4)^2 + (-3)^2} = \sqrt{4 + 16 + 9} = \sqrt{29}. \] Finally, the shortest distance is: \[ d = \frac{|28|}{\sqrt{29}} = \frac{28}{\sqrt{29}}. \]
Conclusion: The shortest distance between the two lines is \[ \boxed{\frac{28}{\sqrt{29}}}. \]
Was this answer helpful?
0
0

Top Questions on 3D Geometry

View More Questions