Step 1: Understanding the Concept:
The given equations are of the form \( \vec{r} = \vec{a}_1 + \lambda \vec{b}_1 \) and \( \vec{r} = \vec{a}_2 + \mu \vec{b}_2 \). We first check if the lines are parallel by comparing their direction vectors, \( \vec{b}_1 \) and \( \vec{b}_2 \). If they are parallel (\(\vec{b}_1 = \vec{b}_2 = \vec{b}\)), we use the formula for the shortest distance between parallel lines.
Step 2: Key Formula or Approach:
The direction vectors are \( \vec{b}_1 = 2\hat{i} + 3\hat{j} + 6\hat{k} \) and \( \vec{b}_2 = 2\hat{i} + 3\hat{j} + 6\hat{k} \). Since \( \vec{b}_1 = \vec{b}_2 \), the lines are parallel.
The formula for the shortest distance between two parallel lines is:
\[ d = \frac{|(\vec{a}_2 - \vec{a}_1) \times \vec{b}|}{|\vec{b}|} \]
where \( \vec{a}_1 \) and \( \vec{a}_2 \) are position vectors of points on the lines and \( \vec{b} \) is the common direction vector.
Step 3: Detailed Explanation:
From the given equations, we have:
\[ \vec{a}_1 = \hat{i} + 2\hat{j} - 4\hat{k} \]
\[ \vec{a}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} \]
\[ \vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k} \]
First, calculate the vector difference \( \vec{a}_2 - \vec{a}_1 \):
\[ \vec{a}_2 - \vec{a}_1 = (3-1)\hat{i} + (3-2)\hat{j} + (-5 - (-4))\hat{k} \]
\[ \vec{a}_2 - \vec{a}_1 = 2\hat{i} + \hat{j} - \hat{k} \]
Next, calculate the cross product \( (\vec{a}_2 - \vec{a}_1) \times \vec{b} \):
\[ (\vec{a}_2 - \vec{a}_1) \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
2 & 1 & -1
2 & 3 & 6 \end{vmatrix} \]
\[ = \hat{i}((1)(6) - (-1)(3)) - \hat{j}((2)(6) - (-1)(2)) + \hat{k}((2)(3) - (1)(2)) \]
\[ = \hat{i}(6 + 3) - \hat{j}(12 + 2) + \hat{k}(6 - 2) \]
\[ = 9\hat{i} - 14\hat{j} + 4\hat{k} \]
Now, find the magnitude of this cross product:
\[ |(\vec{a}_2 - \vec{a}_1) \times \vec{b}| = \sqrt{9^2 + (-14)^2 + 4^2} = \sqrt{81 + 196 + 16} = \sqrt{293} \]
Then, find the magnitude of the direction vector \( \vec{b} \):
\[ |\vec{b}| = \sqrt{2^2 + 3^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \]
Finally, calculate the shortest distance:
\[ d = \frac{\sqrt{293}}{7} \]
Step 4: Final Answer:
The shortest distance between the two parallel lines is \( \frac{\sqrt{293}}{7} \) units.