The total energy in SHM is given by: \[ E = K.E. + P.E., \] where \( K.E. \) (kinetic energy) and \( P.E. \) (potential energy) are related to the displacement \( x \). 
Let \( A \) be the amplitude, and \( x = \frac{A}{n} \). Then: \[ P.E. = \frac{1}{2} k x^2, \quad K.E. = E - P.E. = \frac{1}{2} k A^2 - \frac{1}{2} k x^2. \] Simplify: \[ K.E. = \frac{1}{2} k (A^2 - x^2). \] 
Substitute \( x = \frac{A}{n} \): \[ P.E. = \frac{1}{2} k \left(\frac{A}{n}\right)^2 = \frac{1}{2} k \frac{A^2}{n^2}, \] \[ K.E. = \frac{1}{2} k \left(A^2 - \frac{A^2}{n^2}\right) = \frac{1}{2} k A^2 \left(1 - \frac{1}{n^2}\right). \] 
The ratio \( \frac{K.E.}{P.E.} \) is: \[ \frac{K.E.}{P.E.} = \frac{1 - \frac{1}{n^2}}{\frac{1}{n^2}} = n^2 - 1:1. \] 
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R). 
Assertion (A): Electromagnetic waves carry energy but not momentum. 
Reason (R): Mass of a photon is zero. In the light of the above statements.
choose the most appropriate answer from the options given below:
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)