\(E_1 = E_0 \left(\frac{1}{1^2} - \frac{1}{2^2}\right)\)
\(E_1 = E_0 \times \frac{3}{4}\)
\(E_2 = E_0\)
\(∴\) \(\frac{E_1}{E_2} = \frac{3}{4}\)
So, the correct option is (A): 3:4
Given below are two statements:
Statement (I): A spectral line will be observed for a \(2p_x \rightarrow 2p_y\) transition.
Statement (II): \(2p_x\) and \(2p_y\) are degenerate orbitals.
In the light of the above statements, choose the correct answer from the options given below:
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an electron making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states.
Read More: Atomic Spectra

The Rydberg formula is the mathematical formula to compute the wavelength of light.
\[\frac{1}{\lambda} = RZ^2(\frac{1}{n_1^2}-\frac{1}{n_2^2})\]Where,
R is the Rydberg constant (1.09737*107 m-1)
Z is the atomic number
n is the upper energy level
n’ is the lower energy level
λ is the wavelength of light
Spectral series of single-electron atoms like hydrogen have Z = 1.