Let the points be $A(5,-6)$ and $B(-1,-4)$. Suppose the Y-axis divides $AB$ at point $P(0,y)$ in the ratio $m:n$.
Using the section formula for the $x$-coordinate:
\[
x_P = \frac{mx_2 + nx_1}{m+n}
\]
Here, $x_P = 0$, $x_1 = 5$, $x_2 = -1$.
\[
0 = \frac{m(-1) + n(5)}{m+n}
\]
\[
0 = \frac{-m + 5n}{m+n}
\]
\[
-m + 5n = 0 $\Rightarrow$ m = 5n
\]
Thus, the ratio is $\; m:n = 5:1$.
Check for $y$-coordinate:
\[
y_P = \frac{m y_2 + n y_1}{m+n} = \frac{5(-4) + 1(-6)}{6} = \frac{-20 - 6}{6} = -\frac{26}{6} = -\frac{13}{3}
\]
Since $-\frac{13}{3}$ lies between $-6$ and $-4$, the point lies on the segment.
\[
\boxed{\text{The Y-axis divides the line segment in the ratio } 5:1}
\]