Let $P(x,y)$ be the required point. If $P$ divides $AB$ in the ratio $m:n=3:2$, then by section formula:
\[
x = \frac{mx_2 + nx_1}{m+n}, y = \frac{my_2 + ny_1}{m+n}
\]
Here $x_1=3, \ y_1=4, \ x_2=-2, \ y_2=-1, \ m=3, \ n=2$.
\[
x = \frac{3(-2)+2(3)}{3+2} = \frac{-6+6}{5}=0
\]
\[
y = \frac{3(-1)+2(4)}{3+2} = \frac{-3+8}{5}=\frac{5}{5}=1
\]
\[
\boxed{P(0,1)}
\]