Given:
- Plane:
\[
x - y + z + 4 = 0
\]
- Points:
\[
P(2, 3, -1), \quad Q(1, 4, -2)
\]
- The plane divides the line segment \( PQ \) in the ratio \( l : m \).
Step 1: Let the point of division be \( R \), dividing \( PQ \) in ratio \( l : m \) internally.
Coordinates of \( R \) are:
\[
R = \left( \frac{l \cdot x_2 + m \cdot x_1}{l + m}, \frac{l \cdot y_2 + m \cdot y_1}{l + m}, \frac{l \cdot z_2 + m \cdot z_1}{l + m} \right)
\]
where \( P = (x_1, y_1, z_1) = (2, 3, -1) \), \( Q = (x_2, y_2, z_2) = (1, 4, -2) \).
Step 2: Substitute:
\[
R = \left( \frac{l \cdot 1 + m \cdot 2}{l + m}, \frac{l \cdot 4 + m \cdot 3}{l + m}, \frac{l \cdot (-2) + m \cdot (-1)}{l + m} \right)
= \left( \frac{l + 2m}{l + m}, \frac{4l + 3m}{l + m}, \frac{-2l - m}{l + m} \right)
\]
Step 3: Since \( R \) lies on the plane \( x - y + z + 4 = 0 \), substitute \( R \) coordinates:
\[
\frac{l + 2m}{l + m} - \frac{4l + 3m}{l + m} + \frac{-2l - m}{l + m} + 4 = 0
\]
Step 4: Multiply both sides by \( l + m \):
\[
(l + 2m) - (4l + 3m) + (-2l - m) + 4(l + m) = 0
\]
Simplify:
\[
l + 2m - 4l - 3m - 2l - m + 4l + 4m = 0
\]
\[
(l - 4l - 2l + 4l) + (2m - 3m - m + 4m) = 0
\]
\[
(-1l) + (2m) = 0
\]
\[
- l + 2 m = 0 \quad \Rightarrow \quad l = 2 m
\]
Step 5: We want \( l + m \). Substitute \( l = 2 m \):
\[
l + m = 2m + m = 3 m
\]
Since the ratio is \( l : m = 2 : 1 \), the sum is:
\[
l + m = 2 + 1 = 3
\]
Therefore,
\[
\boxed{3}
\]