Step 1: Compute the probability of exactly one being selected
The probability of exactly one being selected is:
\[
P(\text{Exactly one selected}) = P(R) \cdot P(\overline{J}) \cdot P(\overline{A}) + P(\overline{R}) \cdot P(J) \cdot P(\overline{A}) + P(\overline{R}) \cdot P(\overline{J}) \cdot P(A),
\]
where:
\[
P(\overline{J}) = 1 - P(J) = \frac{2}{3}, \quad P(\overline{A}) = 1 - P(A) = \frac{3}{4}, \quad P(\overline{R}) = 1 - P(R) = \frac{4}{5}.
\]
Substitute the values:
\[
P(\text{Exactly one selected}) = \frac{1}{5} \cdot \frac{2}{3} \cdot \frac{3}{4} + \frac{4}{5} \cdot \frac{1}{3} \cdot \frac{3}{4} + \frac{4}{5} \cdot \frac{2}{3} \cdot \frac{1}{4}.
\]
Simplify each term:
\[
P(\text{Exactly one selected}) = \frac{6}{60} + \frac{12}{60} + \frac{8}{60} = \frac{26}{60} = \frac{13}{30}.
\]
Final Result: The probability that exactly one of them is selected is \( \frac{13}{30} \).