Find the point on the x-axis which is equidistant from (2, –5) and (–2, 9).
We have to find a point on the x-axis. Therefore, its y-coordinate will be 0. Let the point on the x-axis be (x,0).
Distance between (x,0) and (2,-5)=\(\sqrt{(x-2)^2+(0-(-5))^2}=\sqrt{(x-2)^2+(5)^2}\)
Distance between (x,0) and (-2,9)=\(\sqrt{(x-(-2))^2+(0-(-9))^2}=\sqrt{(x+2)^2+(9)^2}\)
By the given condition, these distances are equal in measure.
\(\sqrt{(x-2)^2+(5)^2}=\sqrt{(x+2)^2+(9)^2}\)
\((x-2)^2+25=(x+2)^2+81\)
\(x^2+4-4x+25=x^2+4+4x+81\)
\(8x=25-81\)
\(8x=-56\)
\(x=-7\)
Therefore, the point is (− 7, 0).
Given $\triangle ABC \sim \triangle PQR$, $\angle A = 30^\circ$ and $\angle Q = 90^\circ$. The value of $(\angle R + \angle B)$ is
Leaves of the sensitive plant move very quickly in response to ‘touch’. How is this stimulus of touch communicated and explain how the movement takes place?
Read the following sources of loan carefully and choose the correct option related to formal sources of credit:
(i) Commercial Bank
(ii) Landlords
(iii) Government
(iv) Money Lende