Question:

Find the point on the x-axis which is equidistant from (2, –5) and (–2, 9).

Updated On: Nov 4, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We have to find a point on the x-axis. Therefore, its y-coordinate will be 0. Let the point on the x-axis be (x,0).
Distance between (x,0) and (2,-5)=\(\sqrt{(x-2)^2+(0-(-5))^2}=\sqrt{(x-2)^2+(5)^2}\)
Distance between (x,0) and (-2,9)=\(\sqrt{(x-(-2))^2+(0-(-9))^2}=\sqrt{(x+2)^2+(9)^2}\)
By the given condition, these distances are equal in measure.
\(\sqrt{(x-2)^2+(5)^2}=\sqrt{(x+2)^2+(9)^2}\)
\((x-2)^2+25=(x+2)^2+81\)
\(x^2+4-4x+25=x^2+4+4x+81\)
\(8x=25-81\)
\(8x=-56\)
\(x=-7\)
Therefore, the point is (− 7, 0).

Was this answer helpful?
0
0

Concepts Used:

Coordinate Geometry

Coordinate geometry, also known as analytical geometry or Cartesian geometry, is a branch of mathematics that combines algebraic techniques with the principles of geometry. It provides a way to represent geometric figures and solve problems using algebraic equations and coordinate systems.
The central idea in coordinate geometry is to assign numerical coordinates to points in a plane or space, which allows us to describe their positions and relationships using algebraic equations. The most common coordinate system is the Cartesian coordinate system, named after the French mathematician and philosopher René Descartes.