Step 1: Rewrite the given differential equation
Rearrange the equation to separate variables:
\[
\frac{dy}{dx} = x (e)^y/^x + \frac{y}{x}
\]
This is a homogeneous differential equation.
Step 2: Substitution
Let:
\[
y = v x \quad \Rightarrow \quad \frac{dy}{dx} = v + x \frac{dv}{dx}
\]
Substitute \( y = v x \) into the equation:
\[
v + x \frac{dv}{dx} = x (e)^y/^x + v
\]
Simplify:
\[
x \frac{dv}{dx} = x (e)^y/^x
\]
Step 3: Solve for \( v \)
Rearrange the equation for integration:
\[
\int e^{-v} \, dv = \int \frac{1}{x} \, dx
\]
Evaluate the integrals:
\[
-e^{-v} = \log |x| + c
\]
Substitute \( v = \frac{y}{x} \):
\[
-e^{-\frac{y}{x}} = \log |x| + c \quad \dots {(1)}
\]
Step 4: Apply the initial condition
We are given that \( y = 1 \) when \( x = 1 \). Substitute \( x = 1 \) and \( y = 1 \) into equation (1):
\[
-e^{-\frac{1}{1}} = \log |1| + c
\]
Since \( \log |1| = 0 \):
\[
-e^{-1} = c
\]
Thus:
\[
c = -e^{-1}
\]
Step 5: Substitute \( c \) back into the solution
Substitute \( c = -e^{-1} \) into equation (1):
\[
-e^{-\frac{y}{x}} = \log |x| - e^{-1}
\]
Rearranging:
\[
\log |x| + e^{-\frac{y}{x}} = e^{-1}
\]
% Final Answer
Final Answer:
\[
\boxed{\log |x| + e^{-\frac{y}{x}} = e^{-1}}
\]