The given differential equation is: \[ x^2 \frac{dy}{dx} - xy = x^2 \cos^2\left(\frac{y}{2x}\right). \]
Rearranging terms: \[ \frac{dy}{dx} - \frac{y}{x} = \cos^2\left(\frac{y}{2x}\right). \] This is a linear differential equation of the form: \[ \frac{dy}{dx} + P(x)y = Q(x), \] where \(P(x) = -\frac{1}{x}\) and \(Q(x) = \cos^2\left(\frac{y}{2x}\right)\).
Step 1: Solve the homogeneous equation. The associated homogeneous equation is: \[ \frac{dy}{dx} - \frac{y}{x} = 0. \]
Separating variables: \[ \frac{dy}{y} = \frac{dx}{x}. \] Integrating both sides: \[ \ln y = \ln x + C_1, \] where \(C_1\) is the constant of integration. Simplify: \[ y_h = C_1 x. \]
Step 2: Solve the non-homogeneous equation using an integrating factor. The integrating factor (IF) is: \[ \mu(x) = e^{\int P(x) \, dx} = e^{\int -\frac{1}{x} \, dx} = e^{-\ln x} = \frac{1}{x}. \]
Multiply through the original equation by \(\mu(x)\): \[ \frac{1}{x} \frac{dy}{dx} - \frac{y}{x^2} = \frac{\cos^2\left(\frac{y}{2x}\right)}{x}. \]
Simplify: \[ \frac{d}{dx}\left(\frac{y}{x}\right) = \frac{\cos^2\left(\frac{y}{2x}\right)}{x}. \] Integrating both sides: \[ \frac{y}{x} = \int \frac{\cos^2\left(\frac{y}{2x}\right)}{x} \, dx + C_2. \] Using the initial condition \(x = 1\), \(y = \frac{\pi}{2}\), we find \(C_2\).
Solve further as needed.
The particular solution will depend on further simplification or numerical methods to compute the integral.
The given graph illustrates:
A compound (A) with molecular formula $C_4H_9I$ which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C8H18, which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of A, (B), (C) and (D) when (A) reacts with alcoholic KOH.