Find the median from the following frequency distribution: 
Step 1: Compute cumulative frequencies. 
Step 2: Find $N/2$.
\[ N = 59, \quad N/2 = 29.5 \] Step 3: Locate the median class.
The class with cumulative frequency just greater than 29.5 is 20–30.
Step 4: Apply the median formula.
\[ \text{Median} = L + \left(\dfrac{\dfrac{N}{2} - CF}{f}\right) \times h \] Substitute: $L = 20, \, CF = 15, \, f = 20, \, h = 10$ \[ \text{Median} = 20 + \left(\dfrac{29.5 - 15}{20}\right) \times 10 = 20 + 7.25 = 27.25 \] Step 5: Conclusion.
Hence, the median = 27.25.
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]