Question:

Find the measure of \( \angle VDA \).

Show Hint

For angles between vectors, always use the dot product formula and ensure the magnitude is correctly computed.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Recall the formula for the angle between vectors
The angle \( \theta \) between two vectors \( \overrightarrow{VD} \) and \( \overrightarrow{DA} \) is given by: \[ \cos \theta = \frac{\overrightarrow{VD} \cdot \overrightarrow{DA}}{|\overrightarrow{VD}| \cdot |\overrightarrow{DA}|}. \] Step 2: Compute \( \overrightarrow{VD} \) and \( \overrightarrow{DA} \)
From previous calculations: \[ \overrightarrow{VD} = \overrightarrow{V} - \overrightarrow{D} = (-3\hat{i} + 7\hat{j} + 11\hat{k}) - (2\hat{i} + 3\hat{j} + 4\hat{k}) = -5\hat{i} + 4\hat{j} + 7\hat{k}. \] \[ \overrightarrow{DA} = 5\hat{i} + 2\hat{j} + 4\hat{k}. \] Step 3: Compute \( \overrightarrow{VD} \cdot \overrightarrow{DA} \)
\[ \overrightarrow{VD} \cdot \overrightarrow{DA} = (-5)(5) + (4)(2) + (7)(4) = -25 + 8 + 28 = 11. \] Step 4: Compute magnitudes of \( \overrightarrow{VD} \) and \( \overrightarrow{DA} \)
\[ |\overrightarrow{VD}| = \sqrt{(-5)^2 + 4^2 + 7^2} = \sqrt{25 + 16 + 49} = \sqrt{90}. \] \[ |\overrightarrow{DA}| = \sqrt{(5)^2 + (2)^2 + (4)^2} = \sqrt{25 + 4 + 16} = \sqrt{45}. \] Step 5: Compute \( \cos \theta \)
\[ \cos \theta = \frac{11\sqrt{2}}{\sqrt{90} \cdot \sqrt{45}} = \frac{11\sqrt{2}}{\sqrt{4050}} = \frac{11\sqrt{2}}{90}. \] Step 6: Final result
The measure of \( \angle VDA \) is: \[ \theta = \cos^{-1} \left( \frac{11\sqrt{2}}{90} \right). \]
Was this answer helpful?
0
0