Find the Mean from the Following Table
Given data:
\[ \begin{array}{|c|c|} \hline \text{Class-interval} & \text{Frequency (f)} \\ \hline 0-10 & 3 \\ 10-20 & 10 \\ 20-30 & 11 \\ 30-40 & 9 \\ 40-50 & 7 \\ \hline \end{array} \]
To find the mean from the frequency distribution, we use the formula:
\[ \text{Mean} = \frac{\sum f_i x_i}{\sum f_i} \]
Where \( f_i \) is the frequency and \( x_i \) is the class mark (midpoint) of each class interval.
First, find the class marks \( x_i \) for each class interval. The class mark is calculated as the average of the lower and upper limits of each interval:
\[ x_1 = \frac{0 + 10}{2} = 5, \quad x_2 = \frac{10 + 20}{2} = 15, \quad x_3 = \frac{20 + 30}{2} = 25, \quad x_4 = \frac{30 + 40}{2} = 35, \quad x_5 = \frac{40 + 50}{2} = 45. \]
Now, create a table with \( f_i \), \( x_i \), and \( f_i x_i \):
\[ \begin{array}{|c|c|c|c|} \hline \text{Class-interval} & \text{Frequency} (f_i) & \text{Class mark} (x_i) & f_i x_i \\ \hline 0-10 & 3 & 5 & 15 \\ 10-20 & 10 & 15 & 150 \\ 20-30 & 11 & 25 & 275 \\ 30-40 & 9 & 35 & 315 \\ 40-50 & 7 & 45 & 315 \\ \hline \end{array} \]
Now, calculate the sum of \( f_i x_i \) and \( f_i \):
\[ \sum f_i x_i = 15 + 150 + 275 + 315 + 315 = 1070, \quad \sum f_i = 3 + 10 + 11 + 9 + 7 = 40. \]
The mean is:
\[ \text{Mean} = \frac{1070}{40} = 26.75 \]
Conclusion: The mean of the given frequency distribution is \( \mathbf{26.75} \).
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.