The given ellipse is \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
Let the major axis be along the x−axis.
Let ABC be the triangle inscribed in the ellipse where vertex C is at (a,0).
Since the ellipse is symmetrical with respect to the x−axis and y−axis, we can assume the coordinates of A to be \((−x_1,y_1)\) and the coordinates of B to be \((−x_1,−y_1)\).
Now, we have \(y_1=±\frac{b}{a}\sqrt{a^2-x^2_1}\)
∴Coordinates of A are \((-x_1,\frac{b}{a}\sqrt{a^2-x^2_1})\) and the coordinates of B are
\((-x_1,\frac{b}{a}\sqrt{a^2-x^2_1})\)
As the point \((x_1,y_1)\) lies on the ellipse, the area of triangle ABC(A) is given by,
\(A=\frac{1}{2}|a(\frac{2b}{a}\sqrt{a^2-x^2_1})+(-x_1)\) \((\frac{b}{a}\sqrt{a^2-x^2_1})+(-x_1)(\frac{b}{a}\sqrt{a^2-x^2_1})+(-x_1)\)
\(⇒A=b\sqrt{a^2-x_1^2}+x_1\sqrt{a^2-x_1^2} ...(1)\)
\(∴\frac{dA}{dx_1}\)\(=-\frac{2x_1b}{2\sqrt{a^2-x^2_1}}+\frac{b}{a}{\sqrt{a^2-x^2_1}}-\frac{2bx^2_1}{a2\sqrt{a^2-x^2_1}}\)
\(=\frac{b}{a\sqrt{a^2-x_1^2}}[-x_1a+(a^2-x_1^2)-x_1^2]\)
\(=\frac{b(-2x_1^2-x_1a+a^2)}{a\sqrt{a^2-x_1^2}}\)
Now,\(\frac{dA}{dx_1}=0\)
\(⇒-2x_1^2-x_1a+a^2=0\)
\(⇒x_1=\frac{a±\sqrt{a^2-4(-2)(a^2)}}{2(-2)}\)
\(=\frac{a±\sqrt{9a^2}}{-4}\)
\(=\frac{a±3a}{-4}\)
\(⇒x_1=-a,\frac{a}{2}\)
But, \(x_1\) cannot be equal to a.
\(∴x_1=\frac{a}{2}⇒y_1=\frac{b}{a}\sqrt{a^2-\frac{a^2}{4}}=\frac{ba}{2a}=\sqrt3=\frac{\sqrt{3b}}{2}\)
Now\(\frac{d^2A}{dx^2_1}\)=\(\frac{b}{a}\)\(\bigg[\frac{\sqrt{a^2-x_1^2}(-4x_1-a)-(-2x^2_1-x_1a+a^2)\frac{(-2x_1)}{\sqrt{a^2-x^2_1}}}{a^2-x^2_1}\bigg]\)
\(=\frac{b}{a}[\frac{a^2-x^2_1(-4x_1-a)+x_1-(-2x^2_1-x_1a+a^2)}{(a^2-x_1^2)^{\frac{3}{2}}}]\)
\(=\frac{b}{a}\frac{2x^3-3a^2x-a^3}{(a^2-x^2_1)^\frac{3}{2}}\)
Also, when \(x_1=\frac{a}{2}\),,then
\(\frac{d^2A}{dx^2_1}=\frac{b}{a}\bigg[\frac{\frac{2a3}{8}-3\frac{a^3}{2}-a^3}{(\frac{3a^2}{4})^\frac{3}{2}}\bigg]\)
\(=\frac{-b}{a}\bigg[\frac{\frac{9}{4}a^3}{(\frac{3a^2}{2})^{\frac{3}{2}}}\bigg]<0\)
Thus, the area is the maximum when \(x_1=\frac{a}{2}.\)
∴ Maximum area of the triangle is given by,
\(A=b\sqrt{a^2-\frac{a^2}{4}}+(\frac{a}{2})\sqrt{a^2-\frac{a^2}{4}}\)
\(=ab\frac{\sqrt3}{2}+(\frac{a}{2})\frac{b}{a}\times\frac{a\sqrt3}{2}\)
\(=\frac{ab√3}{2}+\frac{ab√3}{4}=\frac{3√3}{4}ab\)
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
Derry in On the Face of it is a victim of self-pity. Analyse Derry’s behaviour in the light of the above statement.
"___ how little changes in the environment can have big repercussions" Tishani Doshi in Journey to the End of the Earth gives an awakening call for man. Analyse the theme of the lesson in the light of the above statement.