Let A=\(\begin{bmatrix} 1 & 3 & -2\\ -3 & 0 & -5\\ 2&5&0 \end{bmatrix}\)
We know that A = IA
\(\begin{bmatrix} 1 & 3 & -2\\ -3 & 0 & -5\\ 2&5&0 \end{bmatrix}\)=\(\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0&0&1 \end{bmatrix}\)A
Applying \(R_2 → R_2 + 3R_1\) and \(R_3 → R_3 − 2R_1\), we have:
\(\begin{bmatrix} 1 & 3 & -2\\ 0 & 9 & -11\\ 0&-1&4 \end{bmatrix}\)=\(\begin{bmatrix} 1 & 0 & 0\\ 3 & 1 & 0\\ -2&0&1 \end{bmatrix}\)A .
Applying \(R_1 → R_1 + 3R_3\) and \(R_2 → R_2 +8R_3\), we have:
\(\begin{bmatrix} 1 & 0 & 10\\ 0 & 1 & 21\\ 0&-1&4 \end{bmatrix}\)=\(\begin{bmatrix} -5 & 0 & 3\\ -13 & 1 & 8\\ -2&0&1 \end{bmatrix}\)A
Applying \(R_3 → R_3 + R_2\) , we have
\(\begin{bmatrix} 1 & 0 & 10\\ 0 & 1 & 21\\ 0&0&25 \end{bmatrix}\)=\(\begin{bmatrix} -5 & 0 & 3\\ -13 & 1 & 8\\ -15&1&9 \end{bmatrix}\)A
Applying \(R_3 → \frac{1}{25}R_3\) , we have
\(\begin{bmatrix} 1 & 0 & 10\\ 0 & 1 & 21\\ 0&0&1 \end{bmatrix}\)=\(\begin{bmatrix} -5 & 0 & 3\\ -13 & 1 & 8\\ -\frac{3}{5}&\frac{1}{25}&\frac{9}{25} \end{bmatrix}\)
Applying \(R_1 → R_1 -10R_3\) and \(R_2 → R_2 -21R_3\), we have:
\(\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0&0&1 \end{bmatrix}\)=\(\begin{bmatrix} 1 & -\frac25 & -\frac35\\ -\frac25 & \frac{4}{25} & \frac{11}{25}\\ -\frac{3}{5}&\frac{1}{25}&\frac{9}{25} \end{bmatrix}\)A
therefore A-1=\(\begin{bmatrix} 1 & -\frac25 & -\frac35\\ -\frac25 & \frac{4}{25} & \frac{11}{25}\\ -\frac{3}{5}&\frac{1}{25}&\frac{9}{25} \end{bmatrix}\)
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In is an identity matrix of order n × n.
It can be observed that the determinant of the following matrices is non-zero.