Let \(A=\)\(\begin{bmatrix} 1 & 3\\ 2 & 7\end{bmatrix}\)
We know that \(A = IA\)
so\(\begin{bmatrix} 1 & 3\\ 2 & 7\end{bmatrix}\)= \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}A\)
⇒ \(\begin{bmatrix} 1 & 3\\ 0 & 1\end{bmatrix}\)= \(\begin{bmatrix} 1 & 0\\ -2 & 1\end{bmatrix}A\) \((R_2\rightarrow R_2-2R_1) \)
⇒ \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 7 & -3\\ -2 & 1 \end{bmatrix}A\) \((R_1\rightarrow R_1-3R_2) \)
\(\therefore A^{-1}\) =\(\begin{bmatrix} 7 & -3\\ -2 & 1 \end{bmatrix}\)
\(\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\)
The inverse \(\mathbf{A}^{-1}\) is:
\(\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\)
where \(\det(\mathbf{A})\) (the determinant of \(\mathbf{A}\)) is given by:
\(\det(\mathbf{A}) = ad - bc\)
Given the matrix:
\(\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}\)
First, we compute the determinant \(\det(\mathbf{A})\):
\(\det(\mathbf{A}) = (1)(7) - (3)(2) = 7 - 6 = 1\)
Since the determinant is not zero, the inverse exists. Now, we apply the formula for the inverse:
\(\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}\)
Substituting \(\det(\mathbf{A}) = 1\):
\(\mathbf{A}^{-1} = \frac{1}{1} \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}\)
So, the answer is: \(\mathbf{A}^{-1} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}\)
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).

A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In is an identity matrix of order n × n.
It can be observed that the determinant of the following matrices is non-zero.
