Let \(A=\)\(\begin{bmatrix} 1 & 3\\ 2 & 7\end{bmatrix}\)
We know that \(A = IA\)
so\(\begin{bmatrix} 1 & 3\\ 2 & 7\end{bmatrix}\)= \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}A\)
⇒ \(\begin{bmatrix} 1 & 3\\ 0 & 1\end{bmatrix}\)= \(\begin{bmatrix} 1 & 0\\ -2 & 1\end{bmatrix}A\) \((R_2\rightarrow R_2-2R_1) \)
⇒ \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 7 & -3\\ -2 & 1 \end{bmatrix}A\) \((R_1\rightarrow R_1-3R_2) \)
\(\therefore A^{-1}\) =\(\begin{bmatrix} 7 & -3\\ -2 & 1 \end{bmatrix}\)
\(\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\)
The inverse \(\mathbf{A}^{-1}\) is:
\(\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\)
where \(\det(\mathbf{A})\) (the determinant of \(\mathbf{A}\)) is given by:
\(\det(\mathbf{A}) = ad - bc\)
Given the matrix:
\(\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}\)
First, we compute the determinant \(\det(\mathbf{A})\):
\(\det(\mathbf{A}) = (1)(7) - (3)(2) = 7 - 6 = 1\)
Since the determinant is not zero, the inverse exists. Now, we apply the formula for the inverse:
\(\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}\)
Substituting \(\det(\mathbf{A}) = 1\):
\(\mathbf{A}^{-1} = \frac{1}{1} \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}\)
So, the answer is: \(\mathbf{A}^{-1} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}\)
A compound (A) with molecular formula $C_4H_9I$ which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C8H18, which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of A, (B), (C) and (D) when (A) reacts with alcoholic KOH.
A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In is an identity matrix of order n × n.
It can be observed that the determinant of the following matrices is non-zero.