The inverse Fourier transform of \( e^{j2\pi t} \) can be found using the standard Fourier transform pair:
\[
\mathcal{F}^{-1}\{ e^{j\omega_0 t} \} = 2\pi \delta(\omega - \omega_0)
\]
In this case, \( \omega_0 = 2 \), so the inverse Fourier transform is:
\[
\mathcal{F}^{-1}\{ e^{j2\pi t} \} = 2\pi \delta(\omega - 2)
\]
Thus, the correct answer is \( 2\pi \delta(\omega - 2) \), which corresponds to option (1).