List I (Signal) | List II (Fourier Transform) | ||
---|---|---|---|
A | $ x(t-t_0)$ | I | $ \frac{dx(\omega)}{{d\omega}}$ |
B | $ e^{j \omega_0 t} x(t) $ | II | $ e^{j \omega t_0} X(\omega) $ |
C | $ \frac{dx(t)}{{dt}}$ | III | $ x(\omega-\omega_0)$ |
D | $(-jt)x(t) $ | IV | $j\omega X(\omega) $ |
The surface integral \( \int_S x^2 \, dS \) over the upper hemisphere
\[ z = \sqrt{1 - x^2 - y^2} \]
with radius 1 is ..........