>
Exams
>
Signals and Systems
>
Fourier Transform
>
match list i with list ii list i signal list ii fo
Question:
Match List I with List II
List I (Signal)
List II (Fourier Transform)
A
$ x(t-t_0)$
I
$ \frac{dx(\omega)}{{d\omega}}$
B
$ e^{j \omega_0 t} x(t) $
II
$ e^{j \omega t_0} X(\omega) $
C
$ \frac{dx(t)}{{dt}}$
III
$ x(\omega-\omega_0)$
D
$(-jt)x(t) $
IV
$j\omega X(\omega) $
Choose the correct answer from the options given below:
CUET (PG) - 2023
CUET (PG)
Updated On:
Mar 21, 2024
(A)-(III); (B)-(IV); (C)-(I); (D)-(II)
(A)-(II); (B)-(I); (C)-(IV); (D)-(III)
(A)-(II); (B)-(III); (C)-(IV); (D)-(I)
(A)-(IV); (B)-(I); (C)-(II); (D)-(III)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
The Correct answer is option (C) : (A)-(II); (B)-(III); (C)-(IV); (D)-(I)
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Fourier Transform
Fourier transform of \( x(t) = e^{-at}u(t - 2) \) is
AP PGECET - 2024
Electronics and Communication Engineering
Fourier Transform
View Solution
Find the inverse Fourier transform of \( e^{j2\pi t} \):
AP PGECET - 2024
Electrical Engineering
Fourier Transform
View Solution
Let \( X(\omega) \) be the Fourier transform of the signal \( x(t) = e^{-4t
\cos(t), -\inftyLt;tLt;\infty \). The value of the derivative of \( X(\omega) \) at \( \omega = 0 \) is \_\_\_\_\_ (rounded off to 1 decimal place).}
GATE EE - 2024
Engineering Mathematics
Fourier Transform
View Solution
The Fourier transform and its inverse transform are respectively defined as:\[ \tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{i \omega x} dx \]and\[ f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \tilde{f}(\omega) e^{-i \omega x} d\omega \]Consider two functions \( f \) and \( g \). Another function \( f * g \) is defined as:\[ (f * g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(y) g(x - y) dy \]Which of the following relation is/are true?Note: Tilde (~) denotes the Fourier transform.
GATE PH - 2024
Mathematical Physics
Fourier Transform
View Solution
The Fourier transform \(X(\omega)\) of the signal \(x(t)\) is given by \[ X(\omega) = \begin{cases} 1, & |\omega| < W_0
0, & |\omega| > W_0 \end{cases} \] Which one of the following statements is true?
GATE EE - 2023
Signals and Systems
Fourier Transform
View Solution
View More Questions
Questions Asked in CUET PG exam
Kano na kine ki nuksa harum kaba hab ha ka kyntien synrap shiteng shiliang (partial reduplication)?
CUET (PG) - 2025
Khasi Grammar
View Solution
Kino na kine ki nuksa harum ki hab ha ka Intransitive verb?
A. Rah ïa u maw
B. Ai pisa ïa u
C. U Don u ïam
D. U Lam u long uba bha
Jied ïa ka jubab kaba dei na kine harum:
CUET (PG) - 2025
Khasi Grammar
View Solution
Ki jingbatai kiba dei halor ka shyrnong klas katkum u H. W. Sten:
A. Ka conjunction ka lah ban long senten marwei
B. Ka adverb kam ju lah ban long senten marwei
C. Ka ktien Khasi ka don ka shyrnong ha kaba tang ka preposition bad ka pronoun la pyndonkam
D. Ka adjective kam lah ban long senten tang marwei
Jied ïa ka jubab kaba dei na kine harum:
CUET (PG) - 2025
Khasi Grammar
View Solution
Kino na kine ki nuksa harum ki hab ha ka Perfective Aspect:
A. U kren da thiah
B. Ngan wan phira baje nang khreh lypha ho!
C. Nga lah bam ja lō ma nga!
D. Ka sngi ka lah ser arlat.
Jied ïa ka jubab kaba dei na kine harum:
CUET (PG) - 2025
Khasi Grammar
View Solution
Kino na kine ki jingbatai jong u H. W. Sten halor ka jingspel dak ki long kiba dei:
A. Ka jingbym ïaspel ryntih da ki nongthoh ka paw ha ki dak thoh hadien u bowel “u”
B. Bun na ki nongthoh kot Khasi kim iohthiah ïa ka jingbuh “h” bad “u” na ki kot jong ki
C. Bun ki nongthoh eksamin ha ki kyrdan bapher ki thoh ïa ka ktien thoh Khasi kumba ki kren ha ïing
D. Don khyndiat ngut ki nongthoh kiba spel dak ha ka rukom kumba ma ki hi ki kren
Jied ïa ka jubab kaba dei na kine harum:
CUET (PG) - 2025
Khasi Grammar
View Solution
View More Questions