Step 1: For increasing function, we need \( f'(x) > 0 \).
Step 2: Differentiate the function:
\[ f'(x) = \frac{d}{dx}(x^4 - 4x^3 + 4x^2 + 15) = 4x^3 - 12x^2 + 8x \] Factor the derivative:
\[ f'(x) = 4x(x^2 - 3x + 2) = 4x(x - 1)(x - 2) \]
Step 3: Solve \( f'(x) > 0 \):
\[ 4x(x - 1)(x - 2) > 0 \] Critical points: \( x = 0, 1, 2 \)
Step 4: Sign chart analysis:
Conclusion:
\( f'(x) > 0 \) for intervals \( (0, 1) \) and \( (2, \infty) \)
Therefore, f(x) is strictly increasing in (0, 1) and (2, ∞)
Similarly, f(x) is decreasing in (−∞, 0) and (1, 2)
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]