Vertex \((0, 0) \)focus \((-2, 0) \)
Since the vertex of the parabola is \((0, 0)\) and the focus lies on the negative x-axis, the x-axis is the axis of the parabola, while the equation of the parabola is of the form \( y^2= -4ax.\)
Since the focus is \((-2, 0)\), \(a= 2.\)
Thus, the equation of the parabola is \(y ^2= -4*2x\)
,i.e., \(y^2= -8x\) (Ans.)
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
Give reasons for the following.
(i) King Tut’s body has been subjected to repeated scrutiny.
(ii) Howard Carter’s investigation was resented.
(iii) Carter had to chisel away the solidified resins to raise the king’s remains.
(iv) Tut’s body was buried along with gilded treasures.
(v) The boy king changed his name from Tutankhaten to Tutankhamun.
Find the mean deviation about the median for the data
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Parabola is defined as the locus of points equidistant from a fixed point (called focus) and a fixed-line (called directrix).
=> MP2 = PS2
=> MP2 = PS2
So, (b + y)2 = (y - b)2 + x2