Given:
\[
\begin{align}
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,\quad a^2 = 36,\ b^2 = 20 \Rightarrow a = 6
\]
For ellipse, distance between directrices = \( \frac{2a^2}{\sqrt{a^2 - b^2}} \)
Alternatively, for standard horizontal ellipse, directrices are at:
\[
\begin{align}
x = \pm \frac{a}{e},\quad \text{where } e = \frac{\sqrt{a^2 - b^2}}{a}
\Rightarrow e = \frac{\sqrt{36 - 20}}{6} = \frac{\sqrt{16}}{6} = \frac{4}{6} = \frac{2}{3}
\]
So,
\[
\begin{align}
\text{Distance between directrices} = \frac{2a}{e} = \frac{2 \cdot 6}{\frac{2}{3}} = \frac{12 \cdot 3}{2} = 18
\]