We are given the matrix:
\[
\left|
\begin{matrix}
21 & 11 & 10 \\
25 & 15 & 10 \\
64 & 27 & 37
\end{matrix}
\right|
\]
To find the determinant of a 3x3 matrix, we use the formula:
\[
\text{det} \left( A \right) = a(ei - fh) - b(di - fg) + c(dh - eg)
\]
For the given matrix:
\[
\left|
\begin{matrix}
21 & 11 & 10 \\
25 & 15 & 10 \\
64 & 27 & 37
\end{matrix}
\right|
\]
The determinant calculation becomes:
\[
= 21 \left( (15 \times 37) - (10 \times 27) \right) - 11 \left( (25 \times 37) - (10 \times 64) \right) + 10 \left( (25 \times 27) - (15 \times 64) \right)
\]
After performing the multiplication and subtraction, we find that the determinant is \( 0 \).
Thus, the correct answer is 0.