Applying Kirchhoff’s Laws
Given that the equivalent resistance across CH is: \[ R_{CH} = 2R \] Equivalent Circuit Diagram
The given circuit is analyzed using Kirchhoff’s Voltage Law (KVL). We apply KVL to two loops in the circuit. Applying Kirchhoff’s Voltage Law (KVL):
In closed loop ABMNA:
Using KVL in loop ABMNA, we sum the voltage drops: \[ -3IR - 4I_1 R + 16E = 0 \]
This forms our first equation: -3IR - 4I_1 R + 16E = 0
In closed loop BCHMB:
Similarly, applying KVL in loop BCHMB: \[ -2R(I - I_1) - 6E + 4I_1 R = 0 \] This forms our second equation: -2R(I - I_1) - 6E + 4I_1 R = 0
Solving the Equations
Now, solving equations (1) and (2) simultaneously, we obtain: \[ I_1 = \frac{25E}{13R} \] Thus, the current \( I_1 \) in the circuit is determined.
Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
Current passing through a wire as function of time is given as $I(t)=0.02 \mathrm{t}+0.01 \mathrm{~A}$. The charge that will flow through the wire from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: