Let P (x1, y1) and Q (x2, y2) be the points of trisection of the line segment joining the given points i.e., AP = PQ = QB
Therefore, point P divides AB internally in the ratio 1:2.
\(x_1=\frac{1\times(-2)+2\times4}{1+2}\), \(y_1=\frac{1\times (-3)+2\times(-1)}{1+2}\)
\(x_1=\frac{-2+8}{3}=\frac{6}{3}=2\), \(y_1=\frac{-3-2}{3}=\frac{-5}{3}\)
Point Q divides AB internally in the ratio of 2:1.
\(x_2=\frac{2\times(-2)+1\times4}{2+1}\) , \(y_2=\frac{2\times(-3)+1\times(-1)}{2+1}\)
\(x_2=\frac{-4+4}{3}=0\) , \(y_2=\frac{-6-1}{3}=\frac{-7}{3}\)
Q (x2, y2) = \((0,-\frac{7}{3})\)