(5, 4.2)
(5, 8.2)
(4, 10.2)
(3, 12.2)
To solve the problem, we need to find the coordinates of the point dividing the line segment joining $(2, -3)$ and $(7, 9)$ in the ratio $3 : 2$.
1. Understanding the Section Formula:
If a point $P$ divides the line segment joining points $A(x_1, y_1)$ and $B(x_2, y_2)$ in the ratio $m : n$, then the coordinates of $P$ are given by:
$ P = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right) $
2. Substituting the Given Values:
Here,
$ x_1 = 2, \quad y_1 = -3 $
$ x_2 = 7, \quad y_2 = 9 $
$ m = 3, \quad n = 2 $
3. Calculating the $x$-coordinate:
$ x = \frac{3 \times 7 + 2 \times 2}{3 + 2} = \frac{21 + 4}{5} = \frac{25}{5} = 5 $
4. Calculating the $y$-coordinate:
$ y = \frac{3 \times 9 + 2 \times (-3)}{3 + 2} = \frac{27 - 6}{5} = \frac{21}{5} = 4.2 $
5. Final Coordinates:
The point dividing the line segment is $ \boxed{(5, 4.2)} $.