The area of the segment of a circle is given by the formula: \[ A = \frac{1}{2} r^2 \left( \theta - \sin \theta \right) \] where: - \( r = 5 \) (the radius of the circle), - \( \theta = \cos^{-1}\left( \frac{3}{5} \right) \), which is the central angle corresponding to the segment.
First, calculate the angle \( \theta \). The cosine inverse of \( \frac{3}{5} \) gives \( \theta \).
Now, substitute the values of \( r \) and \( \theta \) into the formula for the area: \[ A = \frac{1}{2} \times 5^2 \left( \cos^{-1}\left( \frac{3}{5} \right) - \sin \left( \cos^{-1}\left( \frac{3}{5} \right) \right) \right) \] This simplifies to: \[ A = 25 \cos^{-1}\left( \frac{3}{5} \right) - 12 \] Thus, the area of the segment is \( 25 \cos^{-1}\left( \frac{3}{5} \right) - 12 \).
If the equation of the circle whose radius is 3 units and which touches internally the circle $$ x^2 + y^2 - 4x - 6y - 12 = 0 $$ at the point $(-1, -1)$ is $$ x^2 + y^2 + px + qy + r = 0, $$ then $p + q - r$ is: