Step 1: Recall the formula for adjoint of a matrix. \\ The adjoint of a matrix is the transpose of the cofactor matrix. For a 2x2 matrix \( A = \left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] \), the cofactor matrix is given by: \[ \text{Cofactor}(A) = \left[ \begin{matrix} d & -b \\ -c & a \end{matrix} \right] \] Step 2: Calculate the cofactors for the matrix. \\ For the matrix \( \left[ \begin{matrix} 2 & -2 \\ 4 & 3 \end{matrix} \right] \), the cofactor matrix is: \[ \text{Cofactor}(A) = \left[ \begin{matrix} 3 & 2 \\ -4 & 2 \end{matrix} \right] \] Step 3: Find the adjoint by transposing the cofactor matrix. \\ The adjoint is the transpose of the cofactor matrix: \[ \text{Adjoint}(A) = \left[ \begin{matrix} 3 & -4 \\ 2 & 2 \end{matrix} \right] \]
Final Answer: \[ \boxed{\left[ \begin{matrix} 3 & -4 \\ 2 & 2 \end{matrix} \right]} \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: