Given that, \(a_{11} = 38\) and \( a_{16} = 73\)
We know that,
\(a_n = a + (n − 1) d\)
\(a_{11} = a + (11 − 1) d \)
\(38 = a + 10d \) ……..(1)
Similarly,
\(a_{16} = a + (16 − 1) d\)
\(73 = a + 15d \) …….(2)
On subtracting (1) from (2), we obtain
\(35 = 5d\)
\(d = 7\)
From equation (1),
\(38 = a + 10 × (7) \)
\(38 − 70 = a \)
\(a = −32\)
\(a_{31} = a + (31 − 1) d\)
\(a_{31}= − 32 + 30 (7) \)
\(a_{31}= − 32 + 210\)
\(a_{31}= 178\)
Hence, \(31^{st}\) term is \(178\).
The common difference of the A.P.: $3,\,3+\sqrt{2},\,3+2\sqrt{2},\,3+3\sqrt{2},\,\ldots$ will be:
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
किसी खेल का आँखों देखा वर्णन...
संकेत बिंदु – खेल का वातावरण • लोगों में उत्साह • अंतिम चरण में पासा पलटा
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.