Let \( I = \int x \sqrt{1 + 2x} \, dx \).
Using substitution, let \( u = 1 + 2x \). Then, \[ du = 2 \, dx \quad \text{and} \quad x = \frac{u - 1}{2}. \]
Substitute into the integral: \[ I = \int \frac{u - 1}{2} \sqrt{u} \cdot \frac{1}{2} \, du = \frac{1}{4} \int (u - 1) u^{\frac{1}{2}} \, du. \]
Simplify: \[ I = \frac{1}{4} \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) \, du. \]
Split the integral: \[ I = \frac{1}{4} \left( \int u^{\frac{3}{2}} \, du - \int u^{\frac{1}{2}} \, du \right). \]
Integrate each term: \[ \int u^{\frac{3}{2}} \, du = \frac{2}{5} u^{\frac{5}{2}}, \quad \int u^{\frac{1}{2}} \, du = \frac{2}{3} u^{\frac{3}{2}}. \] Substitute back: \[ I = \frac{1}{4} \left(\frac{2}{5} u^{\frac{5}{2}} - \frac{2}{3} u^{\frac{3}{2}}\right). \]
Simplify and substitute \( u = 1 + 2x \): \[ I = \frac{1}{10} (1 + 2x)^{\frac{5}{2}} - \frac{1}{6} (1 + 2x)^{\frac{3}{2}} + C. \]
Answer: \[ \int x \sqrt{1 + 2x} \, dx = \frac{1}{10} (1 + 2x)^{\frac{5}{2}} - \frac{1}{6} (1 + 2x)^{\frac{3}{2}} + C. \]
An amount of ₹ 10,000 is put into three investments at the rate of 10%, 12% and 15% per annum. The combined annual income of all three investments is ₹ 1,310, however, the combined annual income of the first and second investments is ₹ 190 short of the income from the third. Use matrix method and find the investment amount in each at the beginning of the year.