We are tasked with solving the given integral step by step.
Step 1: Substitution
Let:
\[
x^{\frac{3}{2}} = t \quad \Rightarrow \quad \frac{3}{2} x^{\frac{1}{2}} dx = dt.
\]
This simplifies the differential:
\[
x^{\frac{1}{2}} dx = \frac{2}{3} dt.
\]
Step 2: Transform the integral
The given integral becomes:
\[
\frac{2}{3} \int t \sin^{-1} t \, dt.
\]
Step 3: Apply integration by parts
We use the integration by parts formula:
\[
\int u \, dv = uv - \int v \, du.
\]
Here, choose \(u = \sin^{-1} t\) and \(dv = t \, dt\). Then:
\[
du = \frac{1}{\sqrt{1-t^2}} \, dt, \quad v = \frac{t^2}{2}.
\]
Substituting these into the formula:
\[
\frac{2}{3} \int t \sin^{-1} t \, dt = \frac{2}{3} \left[ \sin^{-1} t \cdot \frac{t^2}{2} - \int \frac{t^2}{2} \cdot \frac{1}{\sqrt{1-t^2}} \, dt \right].
\]
Step 4: Simplify the integral
This expands to:
\[
\frac{2}{3} \int t \sin^{-1} t \, dt = \frac{2}{3} \left[ \frac{t^2 \sin^{-1} t}{2} - \frac{1}{2} \int \frac{t^2}{\sqrt{1-t^2}} \, dt \right].
\]
For the second term, rewrite \(t^2 = (1 - (1-t^2))\), so:
\[
\int \frac{t^2}{\sqrt{1-t^2}} \, dt = \int \frac{1 - (1-t^2)}{\sqrt{1-t^2}} \, dt = \int \sqrt{1-t^2} \, dt - \int \frac{1}{\sqrt{1-t^2}} \, dt.
\]
Step 5: Solve the individual integrals
1. For \(\int \sqrt{1-t^2} \, dt\), the solution is standard:
\[
\int \sqrt{1-t^2} \, dt = \frac{1}{2} \left[ t \sqrt{1-t^2} + \sin^{-1} t \right].
\]
2. For \(\int \frac{1}{\sqrt{1-t^2}} \, dt\), the solution is:
\[
\int \frac{1}{\sqrt{1-t^2}} \, dt = \sin^{-1} t.
\]
Substitute these results back into the integral:
\[
\int \frac{t^2}{\sqrt{1-t^2}} \, dt = \frac{1}{2} \left[ t \sqrt{1-t^2} + \sin^{-1} t \right] - \sin^{-1} t.
\]
Simplify:
\[
\int \frac{t^2}{\sqrt{1-t^2}} \, dt = \frac{1}{2} t \sqrt{1-t^2} + \frac{1}{2} \sin^{-1} t - \sin^{-1} t.
\]
\[
\int \frac{t^2}{\sqrt{1-t^2}} \, dt = \frac{1}{2} t \sqrt{1-t^2} - \frac{1}{2} \sin^{-1} t.
\]
Step 6: Substitute back into the expression
The integral becomes:
\[
\frac{2}{3} \int t \sin^{-1} t \, dt = \frac{2}{3} \left[ \frac{t^2 \sin^{-1} t}{2} - \frac{1}{2} \left( \frac{1}{2} t \sqrt{1-t^2} - \frac{1}{2} \sin^{-1} t \right) \right].
\]
Simplify the terms:
\[
\frac{2}{3} \int t \sin^{-1} t \, dt = \frac{2}{3} \left[ \frac{t^2 \sin^{-1} t}{2} - \frac{1}{4} t \sqrt{1-t^2} - \frac{1}{4} \sin^{-1} t \right].
\]
Step 7: Back-substitute for \(t\)
Recall that \(t = x^{\frac{3}{2}}\). Substituting back:
\[
\frac{2}{3} \int t \sin^{-1} t \, dt = \frac{1}{3} \left[ x^3 \sin^{-1}(x^{\frac{3}{2}}) + \frac{x^{\frac{3}{2}}}{2} \sqrt{1 - x^3} - \frac{1}{2} \sin^{-1}(x^{\frac{3}{2}}) \right] + C.
\]
Final Answer:
\[
\boxed{\frac{1}{3} \left[ x^3 \sin^{-1}(x^{\frac{3}{2}}) + \frac{x^{\frac{3}{2}}}{2} \sqrt{1 - x^3} - \frac{1}{2} \sin^{-1}(x^{\frac{3}{2}}) \right] + C.}
\]