Step 1: Simplify the denominator.
The denominator of the given integral is:
\[
5 - \sin^2 x - 4 \cos x.
\]
Using the identity \( \sin^2 x = 1 - \cos^2 x \), rewrite the expression:
\[
5 - (1 - \cos^2 x) - 4 \cos x = \cos^2 x - 4 \cos x + 4.
\]
Thus, the integral simplifies to:
\[
\int \frac{(3 \cos x - 2) \sin x}{\cos^2 x - 4 \cos x + 4} \, dx.
\]
Step 2: Use substitution.
Let \( u = \cos x \), then:
\[
du = -\sin x \, dx.
\]
Rewriting the integral in terms of \( u \):
\[
-\int \frac{3u - 2}{u^2 - 4u + 4} \, du.
\]
Since the denominator can be factored as:
\[
u^2 - 4u + 4 = (u - 2)^2,
\]
the integral becomes:
\[
-\int \frac{3u - 2}{(u - 2)^2} \, du.
\]
Step 3: Simplify the fraction.
Rewrite the numerator:
\[
3u - 2 = 3(u - 2) + 4.
\]
Thus, the integral splits into:
\[
-\int \frac{3(u - 2)}{(u - 2)^2} \, du - \int \frac{4}{(u - 2)^2} \, du.
\]
Step 4: Evaluate the integrals.
For the first term:
\[
-\int \frac{3(u - 2)}{(u - 2)^2} \, du = -\int \frac{3}{u - 2} \, du = -3 \ln |u - 2|.
\]
For the second term:
\[
-\int \frac{4}{(u - 2)^2} \, du = \frac{4}{u - 2}.
\]
Step 5: Substitute back \( u = \cos x \).
\[
-3 \ln |\cos x - 2| + \frac{4}{\cos x - 2} + C.
\]
Final Answer:
\[
\int \frac{(3 \cos x - 2) \sin x}{5 - \sin^2 x - 4 \cos x} \, dx = -3 \ln |\cos x - 2| + \frac{4}{\cos x - 2} + C.
\]