To calculate the overall standard reduction potential for a series of redox reac tions, use the relationship \(∆G = −nFE^◦\) and combine the contributions from all steps.
The reactions are as follows:
The total Gibbs free energy for the combined reaction is:
\[ \Delta G_3 = \Delta G_1 + \Delta G_2 \]
Substitute \( \Delta G = -nFE^\circ \):
\[ -4FE^\circ_3 = -3F(2.2) + (-1F)(0.7) \]
Simplify the equation:
\[ 4E^\circ_3 = 6.6 + 0.7 = 7.3 \]
Divide by 4:
\[ E^\circ_3 = \frac{7.3}{4} = 1.825 \, \text{V} \]
Express in millivolts:
\[ E^\circ_3 = 1.825 \times 10^3 \, \text{mV} \]
The value of \( x \) is 1825.
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.