To calculate the overall standard reduction potential for a series of redox reac tions, use the relationship \(∆G = −nFE^◦\) and combine the contributions from all steps.
The reactions are as follows:
The total Gibbs free energy for the combined reaction is:
\[ \Delta G_3 = \Delta G_1 + \Delta G_2 \]
Substitute \( \Delta G = -nFE^\circ \):
\[ -4FE^\circ_3 = -3F(2.2) + (-1F)(0.7) \]
Simplify the equation:
\[ 4E^\circ_3 = 6.6 + 0.7 = 7.3 \]
Divide by 4:
\[ E^\circ_3 = \frac{7.3}{4} = 1.825 \, \text{V} \]
Express in millivolts:
\[ E^\circ_3 = 1.825 \times 10^3 \, \text{mV} \]
The value of \( x \) is 1825.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: