Step 1: Simplifying the fraction inside the limit
Divide both numerator and denominator by \( x^2 \):
\[
\frac{3x^2 - 2x + 3}{3x^2 + x - 2} = \frac{3 - \frac{2}{x} + \frac{3}{x^2}}{3 + \frac{1}{x} - \frac{2}{x^2}}
\]
As \( x \to \infty \), the terms \( \frac{2}{x} \), \( \frac{3}{x^2} \), \( \frac{1}{x} \), and \( \frac{2}{x^2} \) tend to zero.
Thus,
\[
\frac{3x^2 - 2x + 3}{3x^2 + x - 2} \to \frac{3}{3} = 1.
\]
Step 2: Applying Logarithm for Exponential Limit Form
We have an indeterminate form \( (1^\infty) \), so we take logarithms:
\[
L = \lim_{x \to \infty} (3x - 2) \ln \left( \frac{3x^2 - 2x + 3}{3x^2 + x - 2} \right).
\]
Expanding using first-order approximations:
\[
\frac{3x^2 - 2x + 3}{3x^2 + x - 2} = 1 + \frac{-3x - 5}{3x^2 + x - 2}.
\]
Approximating for large \( x \),
\[
\ln \left( 1 + \frac{-3x - 5}{3x^2 + x - 2} \right) \approx \frac{-3x - 5}{3x^2 + x - 2}.
\]
Step 3: Evaluating the Limit
Multiplying by \( (3x - 2) \),
\[
L = \lim_{x \to \infty} (3x - 2) \cdot \frac{-3x - 5}{3x^2 + x - 2}.
\]
Approximating,
\[
L = \lim_{x \to \infty} \frac{(3x - 2)(-3x - 5)}{3x^2 + x - 2}.
\]
For large \( x \), the highest degree term dominates:
\[
L = \lim_{x \to \infty} \frac{-9x^2 - 15x + 6x + 10}{3x^2 + x - 2}.
\]
\[
= \lim_{x \to \infty} \frac{-9x^2 - 9x + 10}{3x^2 + x - 2}.
\]
Dividing by \( x^2 \),
\[
= \lim_{x \to \infty} \frac{-9 - \frac{9}{x} + \frac{10}{x^2}}{3 + \frac{1}{x} - \frac{2}{x^2}}.
\]
For large \( x \),
\[
= \frac{-9}{3} = -3.
\]
Thus,
\[
L = -3.
\]
Exponentiating both sides,
\[
\lim_{x \to \infty} \left( \frac{3x^2 - 2x + 3}{3x^2 + x - 2} \right)^{3x - 2} = e^{-3}.
\]