As \( x \to \infty \), for \( x<0 \Rightarrow mx<0 \), so:
\[
\begin{align}
e^{mx} \to 0,\ \text{so } \lim_{x \to \infty} \frac{A + e^{mx}}{x + Ae^{mx}} \approx \frac{A}{x}
\Rightarrow \text{expression tends to 0 as } x \to -\infty
\]
But since the question focuses on \( x<0 \), the dominant behavior is:
\[
\lim_{x \to -\infty} \frac{A}{x} = 0^-
\]
Hence, the limit is effectively \( \frac{A}{x} \) in the region \( x<0 \)