Step 1: Recognizing the sum
The numerator is the sum of the first \( n \) powers of \( x \):
\[
S = x + x^2 + x^3 + \dots + x^n - n.
\]
Rewriting using the formula for sum of a geometric series:
\[
S = \frac{x(x^n - 1)}{x - 1} - n.
\]
Step 2: Applying L'Hôpital's Rule
Differentiating numerator and denominator:
\[
\frac{d}{dx} [x + x^2 + x^3 + \dots + x^n - n] = 1 + 2x + 3x^2 + \dots + nx^{n-1}.
\]
At \( x = 1 \), this simplifies to:
\[
1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.
\]
Step 3: Evaluating the limit
\[
\lim_{x \to 1} \frac{x + x^2 + \dots + x^n - n}{x - 1} = \frac{n(n+1)}{2}.
\]