Given the limit:
\[
\lim_{x \to 1} \frac{x + x^2 + x^3 + \dots + x^n - n}{x - 1}
\]
Step 1: Recognize the numerator is a sum:
\[
S = x + x^2 + x^3 + \dots + x^n
\]
This is a geometric series with first term \( x \) and common ratio \( x \), number of terms \( n \).
Step 2: Sum of the series:
\[
S = x \frac{x^n - 1}{x - 1}
\]
Step 3: Rewrite the limit:
\[
\lim_{x \to 1} \frac{S - n}{x - 1} = \lim_{x \to 1} \frac{x \frac{x^n - 1}{x - 1} - n}{x - 1}
\]
Step 4: The expression has the form \( \frac{f(x) - f(1)}{x - 1} \) where:
\[
f(x) = x + x^2 + \dots + x^n
\]
and
\[
f(1) = 1 + 1 + \dots + 1 = n
\]
Step 5: Hence, the limit is the derivative of \( f(x) \) at \( x=1 \):
\[
\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)
\]
Step 6: Differentiate \( f(x) \):
\[
f(x) = \sum_{k=1}^n x^k \implies f'(x) = \sum_{k=1}^n k x^{k-1}
\]
Step 7: Evaluate at \( x = 1 \):
\[
f'(1) = \sum_{k=1}^n k \times 1^{k-1} = \sum_{k=1}^n k = \frac{n(n+1)}{2}
\]
Therefore, the value of the limit is:
\[
\boxed{\frac{n(n+1)}{2}}
\]