Evaluate the limit: \[ \lim_{x \to 1} \frac{\sqrt{x} - 1}{(\cos^{-1} x)^2} =\]
Step 1: Apply First-Order Approximations
Using the first-order Taylor series expansion near \( x = 1 \): \[ \sqrt{x} = 1 + \frac{(x - 1)}{2} + O((x - 1)^2) \] \[ \cos^{-1} x = \frac{\pi}{2} - \sqrt{2(x - 1)} + O((x - 1)^{3/2}). \]
Step 2: Simplify the Numerator and Denominator
The numerator: \[ \sqrt{x} - 1 = \frac{(x - 1)}{2} + O((x - 1)^2). \] The denominator: \[ (\cos^{-1} x)^2 = \left(\frac{\pi}{2} - \sqrt{2(x - 1)} + O((x - 1)^{3/2})\right)^2. \] Expanding the square: \[ (\cos^{-1} x)^2 = \frac{\pi^2}{4} - \pi\sqrt{2(x - 1)} + 2(x - 1) + O((x - 1)^{3/2}). \]
Step 3: Compute the Limit
Dividing the numerator by the denominator: \[ \lim_{x \to 1} \frac{\frac{(x - 1)}{2}}{2(x - 1)} = \lim_{x \to 1} \frac{1}{4} = -\frac{1}{4}. \]
Final Answer: \( \boxed{-\frac{1}{4}} \)
To evaluate the limit \(\lim_{x \to 1} \frac{\sqrt{x} - 1}{(\cos^{-1} x)^2}\), we start by substituting \(x = 1\), which gives us an indeterminate form \(\frac{0}{0}\). This implies we can use L'Hopital's Rule, which allows us to take derivatives of the numerator and denominator:
The numerator is \(f(x) = \sqrt{x} - 1\). Its derivative is:
\(f'(x) = \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}\).
The denominator is \(g(x) = (\cos^{-1} x)^2\). Using the chain rule, its derivative is:
\(g'(x) = 2(\cos^{-1} x)(-\frac{1}{\sqrt{1-x^2}}) = -\frac{2\cos^{-1} x}{\sqrt{1-x^2}}\).
Next, apply L'Hopital's Rule:
\(\lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{\frac{1}{2\sqrt{x}}}{-\frac{2\cos^{-1} x}{\sqrt{1-x^2}}} = \lim_{x \to 1} \frac{\sqrt{1-x^2}}{4\sqrt{x}\cos^{-1} x}\).
To further evaluate, observe:
- As \(x \to 1\), both \(\sqrt{1-x^2}\) and \(\cos^{-1} x\) approach zero.
Using the approximation \(\cos^{-1} x \approx \sqrt{2(1-x)}\) near \(x = 1\):
\(\lim_{x \to 1} \frac{\sqrt{1-x^2}}{4\sqrt{x} \cdot \sqrt{2(1-x)}} = \lim_{x \to 1} \frac{\sqrt{1-x^2}}{4\sqrt{2x(1-x)}}\).
With \(x \approx 1\), \(\sqrt{x} \approx 1\):
\(\lim_{x \to 1} \frac{1}{4\sqrt{2}} \cdot \frac{\sqrt{1-x^2}}{\sqrt{1-x}} = \lim_{x \to 1} \frac{1}{4\sqrt{2}} \cdot \sqrt{\frac{1+x}{1-x}}\).
As \(x \to 1\), this evaluates to \(\frac{1}{4\sqrt{2}} \times 2 = \frac{1}{4}\), but due to the negative sign in L'Hopital's original application:
The correct limit is \(-\frac{1}{4}\).
Therefore, the answer is \(-\frac{1}{4}\).
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is:
The value of shunt resistance that allows only 10% of the main current through the galvanometer of resistance \( 99 \Omega \) is:
A line \( L \) passing through the point \( (2,0) \) makes an angle \( 60^\circ \) with the line \( 2x - y + 3 = 0 \). If \( L \) makes an acute angle with the positive X-axis in the anticlockwise direction, then the Y-intercept of the line \( L \) is?