Evaluate the limit: \[ \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2 + x^5 + x^6}}{x^4} =\]
Step 1: Approximate the Square Root Expansions
Using the first-order binomial approximation: \[ \sqrt{1 + x} \approx 1 + \frac{x}{2} \text{ for small } x. \] Expanding \( \sqrt{1 + x^4} \): \[ \sqrt{1 + x^4} \approx 1 + \frac{x^4}{2}. \] Thus, expanding the nested square root term: \[ \sqrt{1 + \sqrt{1 + x^4}} = \sqrt{1 + \left(1 + \frac{x^4}{2} - 1\right)} = \sqrt{1 + \frac{x^4}{2}}. \] Applying binomial approximation again: \[ \sqrt{1 + \frac{x^4}{2}} \approx 1 + \frac{x^4}{4}. \]
Step 2: Approximate the Second Square Root Term
Expanding \( \sqrt{2 + x^5 + x^6} \): \[ \sqrt{2 + x^5 + x^6} \approx \sqrt{2} \cdot \sqrt{1 + \frac{x^5}{2} + \frac{x^6}{2}}. \] Using the binomial expansion: \[ \sqrt{1 + \frac{x^5}{2} + \frac{x^6}{2}} \approx 1 + \frac{x^5}{4} + \frac{x^6}{4}. \] Thus, \[ \sqrt{2 + x^5 + x^6} \approx \sqrt{2} \left(1 + \frac{x^5}{4} + \frac{x^6}{4} \right) = \sqrt{2} + \frac{\sqrt{2} x^5}{4} + \frac{\sqrt{2} x^6}{4}. \]
Step 3: Compute the Limit
Now, the numerator simplifies to: \[ \left(1 + \frac{x^4}{4}\right) - \left(\sqrt{2} + \frac{\sqrt{2} x^5}{4} + \frac{\sqrt{2} x^6}{4}\right). \] Rearranging: \[ 1 - \sqrt{2} + \frac{x^4}{4} - \frac{\sqrt{2} x^5}{4} - \frac{\sqrt{2} x^6}{4}. \] For small \( x \), the dominant term in the numerator is: \[ \frac{x^4}{4}. \] Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\frac{x^4}{4}}{x^4} = \frac{1}{4\sqrt{2}}. \]
Final Answer: \( \boxed{\frac{1}{4\sqrt{2}}} \)