Given the limit:
\[
\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2}
\]
Step 1: As \( x \to 0 \), \(\cos x \to 1\), so \(\cos^2 x \to 1\).
Hence, inside the sine function:
\[
\pi \cos^2 x \to \pi \times 1 = \pi
\]
and \(\sin(\pi) = 0\). So the expression is of the form \(\frac{0}{0}\), allowing use of expansions.
Step 2: Use the Taylor expansion for \(\cos x\) near 0:
\[
\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots
\]
\[
\cos^2 x = \left(1 - \frac{x^2}{2} + \dots\right)^2 = 1 - x^2 + \dots
\]
Step 3: Substitute into \(\sin(\pi \cos^2 x)\):
\[
\sin(\pi \cos^2 x) = \sin\left(\pi \left[1 - x^2 + \dots \right]\right) = \sin(\pi - \pi x^2 + \dots)
\]
Step 4: Use the sine identity:
\[
\sin(\pi - \theta) = \sin \theta
\]
So:
\[
\sin(\pi - \pi x^2 + \dots) = \sin(\pi x^2 + \dots)
\]
Step 5: For small \( x \), \(\sin(\pi x^2) \approx \pi x^2\). So:
\[
\sin(\pi \cos^2 x) \approx \pi x^2
\]
Step 6: Substitute back into the limit:
\[
\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \approx \lim_{x \to 0} \frac{\pi x^2}{x^2} = \pi
\]
Therefore,
\[
\boxed{\pi}
\]