Step 1: Expanding \( \cos^2 x \) for small \( x \)
Using \( \cos x \approx 1 - \frac{x^2}{2} \), we approximate:
\[
\cos^2 x \approx 1 - x^2.
\]
Step 2: Expanding \( \sin(\pi \cos^2 x) \)
\[
\sin(\pi \cos^2 x) = \sin(\pi (1 - x^2)) \approx \sin(\pi - \pi x^2).
\]
Using \( \sin(\pi - \theta) = \sin\theta \), we get:
\[
\sin(\pi - \pi x^2) \approx \sin(\pi x^2) \approx \pi x^2.
\]
Step 3: Evaluating the limit
\[
\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} = \lim_{x \to 0} \frac{\pi x^2}{x^2} = \pi.
\]