Question:

Evaluate the integral: \[ \int \sqrt{x + \sqrt{x^2 + 2}} \, dx. \]

Show Hint

Use substitution to simplify complicated square roots and reduce the integrand to a manageable form.
Updated On: Mar 26, 2025
  • \(\frac{2}{3} (x + \sqrt{x^2 + 2})^{3/2} - 2(x + \sqrt{x^2 + 2})^{1/2} + C\)
  • \(\frac{1}{3} (x + \sqrt{x^2 + 2})^{3/2} - 2(x + \sqrt{x^2 + 2})^{1/2} + C\)
  • \( (x + \sqrt{x^2 + 2})^{-3/2} - 2(x + \sqrt{x^2 + 2})^{1/2} + C\)
  • \(\frac{(x+\sqrt{x^2+2})^2 - 6}{3\sqrt{x+\sqrt{x^2+2}}} + C\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Using substitution \( u = x + \sqrt{x^2 + 2} \), we compute the integral:
\[int \sqrt{x + \sqrt{x^2 + 2}} \, dx\] \[{Let } \sqrt{x + \sqrt{x^2 + 2}} = t \Rightarrow x + \sqrt{x^2 + 2} = t^2\] \[\sqrt{x^2 + 2} = t^2 - x\] \[\Rightarrow x^2 + 2 = t^4 + x^2 - 2t^2x\] \[\Rightarrow x = \frac{t^4 - 2}{2t^2} \Rightarrow dx = \frac{t^4 + 2}{t^3} \, dt\] \[\int t \cdot \frac{t^4 + 2}{t^3} \, dt = \int \left(t^2 + \frac{2}{t^2}\right) \, dt = \frac{t^3}{3} - \frac{2}{t} + C\] \[= \frac{t^4 - 6}{3t} + C\] \[= \frac{(x + \sqrt{x^2 + 2})^2 - 6}{3\sqrt{x + \sqrt{x^2 + 2}}} + C\]
Was this answer helpful?
0
0