Evaluate the integral:
\[
I = \int \frac{x^5}{x^2 + 1} \, dx
\]
Step 1: Perform polynomial division since the degree of numerator is higher than denominator:
Divide \( x^5 \) by \( x^2 + 1 \):
\[
\frac{x^5}{x^2 + 1} = x^3 - x + \frac{x}{x^2 + 1}
\]
Step 2: Rewrite the integral:
\[
I = \int \left( x^3 - x + \frac{x}{x^2 + 1} \right) dx = \int x^3 \, dx - \int x \, dx + \int \frac{x}{x^2 + 1} \, dx
\]
Step 3: Integrate each term separately:
\[
\int x^3 \, dx = \frac{x^4}{4}
\]
\[
\int x \, dx = \frac{x^2}{2}
\]
\[
\int \frac{x}{x^2 + 1} \, dx
\]
For the last integral, let \( u = x^2 + 1 \), then \( du = 2x dx \Rightarrow x dx = \frac{du}{2} \), so:
\[
\int \frac{x}{x^2 + 1} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \log|u| + C = \frac{1}{2} \log(x^2 + 1) + C
\]
Step 4: Combine results:
\[
I = \frac{x^4}{4} - \frac{x^2}{2} + \frac{1}{2} \log(x^2 + 1) + C
\]
Therefore, the integral evaluates to:
\[
\boxed{\frac{x^4}{4} - \frac{x^2}{2} + \frac{1}{2} \log(x^2 + 1) + C}
\]