Question:

Evaluate the integral \[ \int \frac{x^5}{x^2 + 1} dx. \]

Show Hint

For rational integrals, split terms and use substitution if needed.
Updated On: Mar 24, 2025
  • \( \frac{x^4}{4} + \frac{x^3}{3} - \tan^{-1} x + c \)
  • \( \frac{x^4}{4} - \frac{x^2}{2} + \frac{1}{2} \log(x^2 + 1) + c \)
  • \( \frac{x^4}{4} + \frac{x^3}{3} + \tan^{-1} x + c \)
  • \( \frac{x^4}{4} + \frac{x^2}{2} - \frac{1}{2} \log(x^2 + 1) + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Splitting the integral Rewriting: \[ I = \int \frac{x^5}{x^2 + 1} dx. \] Splitting: \[ I = \int x^3 \cdot \frac{x^2}{x^2 + 1} dx. \] Step 2: Using substitution Let \( u = x^2 + 1 \), then \( du = 2x dx \). This simplifies the integral, leading to: \[ I = \frac{x^4}{4} - \frac{x^2}{2} + \frac{1}{2} \log(x^2 + 1) + c. \]
Was this answer helpful?
0
0