Let’s perform the integration:
\[
I = \int \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}} \, dx
\]
Let us try substitution:
Let \( u = \sqrt{x^2 - 1} \Rightarrow x = \sqrt{u^2 + 1} \), but this route is complex.
Instead, try differentiating option (4):
\[
\begin{align}
\frac{d}{dx} \left( \frac{\sqrt{x^2 - 1}}{x^2} \right)
= \frac{d}{dx} \left( (x^2 - 1)^{1/2} \cdot x^{-2} \right)
\]
Apply product rule:
\[
\begin{align}
= x^{-2} \cdot \frac{1}{2}(x^2 - 1)^{-1/2} \cdot 2x + (x^2 - 1)^{1/2} \cdot (-2x^{-3})
= \frac{x}{x^2 \sqrt{x^2 - 1}} - \frac{2\sqrt{x^2 - 1}}{x^3}
\]
Simplify numerator:
\[
\begin{align}
\frac{x^2 - 2(x^2 - 1)}{x^3 \sqrt{x^2 - 1}} = \frac{x^2 - 2x^2 + 2}{x^3 \sqrt{x^2 - 1}} = \frac{-x^2 + 2}{x^3 \sqrt{x^2 - 1}}
= \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}}
\]
Thus verified.