Question:

Evaluate the integral \( \int \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}} \, dx \)

Show Hint

When solving integrals, try differentiating the answer options to verify correctness.
Updated On: May 17, 2025
  • \( \frac{-x^2}{\sqrt{x^2 - 1}} \)
  • \( \frac{-\sqrt{x^2 - 1}}{x} \)
  • \( \frac{-x}{\sqrt{x^2 - 1}} \)
  • \( \frac{\sqrt{x^2 - 1}}{x^2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Let’s perform the integration: \[ I = \int \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}} \, dx \] Let us try substitution: Let \( u = \sqrt{x^2 - 1} \Rightarrow x = \sqrt{u^2 + 1} \), but this route is complex. Instead, try differentiating option (4): \[ \begin{align} \frac{d}{dx} \left( \frac{\sqrt{x^2 - 1}}{x^2} \right) = \frac{d}{dx} \left( (x^2 - 1)^{1/2} \cdot x^{-2} \right) \] Apply product rule: \[ \begin{align} = x^{-2} \cdot \frac{1}{2}(x^2 - 1)^{-1/2} \cdot 2x + (x^2 - 1)^{1/2} \cdot (-2x^{-3}) = \frac{x}{x^2 \sqrt{x^2 - 1}} - \frac{2\sqrt{x^2 - 1}}{x^3} \] Simplify numerator: \[ \begin{align} \frac{x^2 - 2(x^2 - 1)}{x^3 \sqrt{x^2 - 1}} = \frac{x^2 - 2x^2 + 2}{x^3 \sqrt{x^2 - 1}} = \frac{-x^2 + 2}{x^3 \sqrt{x^2 - 1}} = \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}} \] Thus verified.
Was this answer helpful?
0
0